Мышечная система человека. Все, что надо знать

Информация

Функции мышечной ткани человека

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием.

Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу.

https://www.youtube.com/watch?v=https:iMkOHzn2Gog

Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом.

Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками.

Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни.

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется.

Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна.

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Основной функцией мышечной системы является движение. Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела. Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение.

Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.Еще одна функция, связанная с движением является движение веществ внутри тела. Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Мышечная система человека. Все, что надо знать

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Виды мышц

Распознают 3 вида:

  1. Как устроена мышечная системаСкелетные (поперечнополосатые). Крепятся к скелету с помощью сухожилий. Они образуют форму тела и перемещают его в пространстве. Если регулярно подвергать их нагрузке и при этом правильно питаться, то мускулы увеличатся в объёме и приобретут рельефность. Человек может контролировать данный тип мускулов, но они также имеют свойство сокращаться непроизвольно, по приказу нервной системы.
  2. Гладкие. Являются частью стенок некоторых внутренних органов таких как пищевод, желудок, кишечник, бронхи, матка, мочевой пузырь, уретра и кровеносные сосуды. Они работают непроизвольно и подчиняются лишь вегетативной нервной системе.
  3. Миокард выделяется в отдельную группу. Найти его можно только в сердце. Так же как гладкие, сердечная мышца сокращается вне зависимости от воли человека, но по структуре ближе к поперечнополосатой мышечной ткани.

Мускулы покрыты оболочкой из эпимизия. Внутри данной оболочки содержатся многочисленные пучки мышечных волокон. Эти пучки отделены друг от друга покрытием из перимизия, который также является проводчиком для нервов и кровяного тока.

Мышечные волокна, называемые ещё миоцитами — это главная составляющая мускулов. Они различаются внешне и функционально в зависимости от типа мышечной ткани. Эти клетки содержат нити белков актина и миозина, которые, взаимодействуя, порождают сокращение мускулов.

Классификация мышц происходит по различным признакам. Функционально различают мускулы, сгибающие и разгибающие суставы, перемещающие конечности в разных плоскостях. Для описания мускулов используются специальные термины, определяющие, где они находятся, какую форму приняли и каково направление их волокон. Мышцы также разделяются по количеству суставов, с которыми они связаны, на односоставные и многосуставные.

Многим приходится озаботиться вопросом, как выучить быстро анатомию мышц человека. Вызубрить все мышцы человека и их названия за короткий срок невозможно, ведь их во всем организме больше 800, но изучить основные поверхностные мускулы и их назначение вполне выполнимо. Для этого полезно будет обзавестись схемами, таблицами и рисунками человеческого тела.

Далее перечислены 46 наименований с описанием задач, разделённые на 4 группы по месту расположения.

Голова и шея

  1. Как устроена мышечная системаНадчерепная. Представляет собой подобие шлема, который покрывает голову ото лба до затылка. С её помощью поднимают брови.
  2. Круговая мышца глаз. Закрывает и зажмуривает веки.
  3. Грудино-ключично-сосцевидная. Выполняет наклон шеи. При одновременном сокращении парной мышцы поддерживает голову в вертикальном положении.

Туловище и торс

  1. Какие мышцы есть у человекаБольшая грудная. Расположена в области груди. Сгибает плечевой сустав внутрь. Также участвует в опускании поднятой руки и в сгибании локтей во время подтягивания.
  2. Передняя зубчатая. Обхватывает туловище, используя в качестве крепления рёбра под грудиной и лопатку. Фиксирует лопатку и принимает участие в поднятии руки.
  3. Прямая мышца живота. При интенсивных тренировках образует пресловутый рельефный пресс. Сгибает позвоночник.
  4. Наружная косая мышца живота. Облегает бока туловища. Выполняет поворот торса.
  5. Ременная мышца головы. Находится на задней части шеи. Выгибает шейные позвонки назад.
  6. Поднимающая лопатку. Функции этого мускула ясны из названия. Тянется она от шейных позвонков до верхнего края лопатки.
  7. Надостная. Крепится к лопатке и плечевому суставу. Совершает вывод руки назад, особенно поднятой конечности.
  8. Мышечная тканьМалая круглая. Зафиксирована на наружном крае лопатки и плечевой кости. Участвует во вращении плечевого сустава назад.
  9. Подостная. Присоединена к лопатке и плечевому суставу. Играет роль во вращении плеча.
  10. Большая круглая. Простирается от лопатки до кости плеча. Выполняет функцию приведения руки к телу.
  11. Трапециевидная. Крепится к позвоночнику, плечу и затылку. По форме напоминает треугольник, а в совокупности парные мышцы образуют трапецию. Совершает вращение лопаток.
  12. Ромбовидная. Протягивается между лопаткой и позвоночником. Приводит лопатку к центру.
  13. Нижняя задняя зубчатая. Покрывает рёбра на спине. Помогает при дыхании.
  14. Широчайшая мышца спины. Располагается прямо под трапециевидной мышцей. Тянет руку назад и вниз.
  1. Руки и мышцы конечностейДельтовидная. Плечевой мускул, имеющий треугольную форму, сходную с греческой буквой «дельта». Отвечает за поднятие и опускание руки.
  2. Бицепс (двуглавая мышца плеча). Путь этого мускула проходит из области лопатки через отверстие в плечевом суставе, тянется по передней части плеча и заканчивается у лучевой кости предплечья. Данная система сгибает плечо и локоть.
  3. Трицепс (трёхглавая мышца плеча). Находится в задней части плеча, от дельтовидной мышцы до локтя. Участвует в разгибании локтя, отведении руки назад и к туловищу.
  4. Плечевая. Покрывает внутреннюю часть локтя. Сгибает локтевой сустав.
  5. Плечелучевая. Занимает место в передней части предплечья. Участвует в сгибании локтя. Она также ответственна за положение руки в расслабленном состоянии.
  6. Круглый пронатор. Расположен по соседству с плечелучевым мускулом. Как следует из названия, фигурирует в пронации (вращении внутрь) предплечья.
  7. Лучевой сгибатель запястья. Узкий мускул протянут от локтя до запястья. Сгибает кисть.
  8. Длинный и короткий лучевые разгибатели запястья. Находятся в области предплечья. Разгибают кисть.
  9. Разгибатель пальцев. Проходит по наружной части предплечья — от локтя до пальцев. Распрямляет пальцы кроме большого.
  10. Локтевой разгибатель запястья. Тянется от локтя до основания мизинца.
  11. Квадратный пронатор. Располагается в области запястья. Разворачивает предплечье внутрь.
  1. Мышцы нижних конечностейНапрягатель широкой фасции бедра. Расположен на наружной верхней части бедра. Сгибает колено.
  2. Гребенчатая. Находится в верхней части бедра, ближе к паху. Помогает в работе тазобедренного сустава.
  3. Длинная приводящая. Соседствует с гребенчатой. Тянет бедро к центру.
  4. Тонкая. Располагается на внутренней поверхности бедра начиная от лобковой кости. Выполняет приведение бедра к центру и сгибание коленного сустава.
  5. Четырехглавая мышца бедра. Составляет переднюю часть бедра и включает в себя прямую, медиальную широкую, латеральную широкую и промежуточную широкую мышцы. Участвует в сгибании и разгибании колена.
  6. Портняжная. Самый длинный мускул в теле человека. Спирально простирается от передней верхней части бедра до задней верхней части голени. Сгибает таз и колено. Играет роль во вращении бедра и голени.
  7. Передняя большеберцовая. Проходит вдоль большеберцовой кости в передней части голени. Участвует в разгибании и сгибании стопы.
  8. Длинная и короткая малоберцовые. Длятся вдоль малоберцовой кости на наружной части голени. Вместе они сгибают стопу и поворачивают её вовнутрь.
  9. Большая ягодичная. Самый крупный мускул в организме человека, формирующий форму ягодиц. Удерживает тело в вертикальном положении. Этим объясняется её большой по сравнению с другими животными размер у человека.
  10. Средняя ягодичная. Частично скрывается под большой ягодичной. Перемещает ногу в сторону и совершает вращение бедра.
  11. Малая ягодичная. Расположена на наружной части бедра на уровне ягодиц. Работает аналогично средней ягодичной.
  12. Верхняя и нижняя близнецовые. Располагаются в нижней области ягодиц. Совершают вращение бедра.
  13. Мышцы тела человекаПолуперепончатая. Находится на задней внутренней части бедра. Совместно с другими мышцами выпрямляет согнутое бедро и гнёт колено.
  14. Двуглавая мышца бедра. Оккупирует заднюю область бедра. Занимается разгибанием бедра и сгибанием колена.
  15. Полусухожильная. Укрывается между двуглавым и полуперепончатым мускулами. Выполняет те же функции, что и другие мышцы заднего отдела бедра.
  16. Трёхглавая мышца голени. Заполняет заднюю часть голени от колена до пятки, куда крепится за счёт ахиллова сухожилия. Включает в себя икроножную и камбаловидную мышцы. Помогает в сгибании стопы и удержании равновесия во время ходьбы. Так как эта группа мускулов несёт на себе вес всего тела, по силе она уступает разве что жевательной мышце.
  17. Задняя большеберцовая. Располагается рядом с трёхглавой. Участвует в сгибании ступни.

Анатомия скелетных мышц

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Как осуществляется работа мышц?

Функционирование мышц происходит благодаря следующим их свойствам:

  • Возбудимость – это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
  • Проводимость – свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
  • Сократимость – конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

Названия скелетных мышц

Туловище и торс

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Строение мышц

Виды мышц

Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких — веретенообразная.

Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

Классификация мышц по различным критериям

Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

  1. По форме и длине.
  2. По выполняемым функциям.
  3. По отношению к суставам.
  4. По локализации в теле.
  5. По принадлежности к определённым частям тела.
  6. По расположению мышечных пучков.

Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

  1. Поперечно-полосатые скелетные мышцы.
  2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
  3. Сердечные волокна.

Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

Гистология скелетной мускулатуры

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна.

Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 ), которые имеют жизненно важное значение для сокращения мышц.Митохондрии, движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Актин.Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Форма и величина мышечных пучков

  1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример – межпозвоночные спинные мышцы.
  2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
  3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

  1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
  2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

Скелетная мускулатура в роли рычага

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

По отношению к суставам

Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум – двусуставная, а если больше суставов – многосуставная (сгибатели/разгибатели пальцев).

Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы.

Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.Размер двигательных единиц изменяется по всему телу, в зависимости от функции.

Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 высвобождаются и протекают в миофибриллы. Ионы Са2 связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Локализация мускулатуры

Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях – к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

Типы мышечных сокращений

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается.

Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Мышечная система человека. Все, что надо знать

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Виды мускулатуры по частям тела

По отношению к частям тела мускулатура делится на следующие виды:

  1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы – виды мышц, благодаря которым человек выражает свои эмоции, настроение.
  2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
  3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

Функциональные типы скелетных мышечных волокон

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Волокна, формирующие скелетные мушцы, делятся на две группы: «медленные», или ST-волокна (slow twitch fibers) и «быстрые», FT-волокна (fast twitch fibers). ST-волокна содржат большое количество белка миоглобина, имеющего красный цвет, поэтому их ещё называют красными волокнами. Это — выносливые волокна, но работают они при нагрузке в пределах 20-25% от максимальной силы мышц.

При нагрузках менее 25% от максимальной мышечной силы сначала работают ST-волокна, а потом, когда наступит их истощение — в работу включаются FT-волокна. Когда и они израсходуют энергетический ресурс, наступит их истощение и мышце потребуется отдых. Если же нагрузка изначально велика — одновременно работают оба вида волокон.

Однако не стоит ошибочно ассоциировать типы волокон со скоростью движений, которые выполняет человек. То, какой тип волокон преимущественно задействован в работа в данный момент, зависит не от скорости выполняемого движения, а от усилия, которое необходимо затратить на данное действие. С этим связано и то обстоятельство, что разные типы мышц, выполняющие различные функции, имеют пазное соотношение  ST- и FT-волокон.

Кстати, как и общее количество мышечных волокон, соотношение ST/FT волокон в мышцах конкретного человека является генетически обусловленным и сохраняется постоянным на протяжении всей жизни. Это также объясняет врождённые способности к определённым видам спорта: у самых «талантливых», выдающихся бегунов-спринтеров икроножные мышцы на 90% состоят из «быстрых» волокон, а у марафонцев — напротив, до 90% этих волокон — медленные.

Впрочем, несмотря на то, что природное количество мышечных волокон, а также соотношение их быстрой и медленной разновидностей изменить невозможно, грамотно спланированные и настойчивые тренировки заставят мышцы приспособляться к нагрузкам и непременно принесут результат.

Мышечный метаболизм и усталость

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы.

Мышечная система человека. Все, что надо знать

Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания).

Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы. Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин, красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови.

Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат. Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц.

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость. Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ.

Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя.

Группы мускулатуры по структурным особенностям

Строение мышц

Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:

  1. Скелетные мышцы имеют наибольший удельный вес среди остальных и формируют активную часть опорно-двигательного аппарата человека. Относятся к классу поперечно-полосатых тканей. Анатомия мышц данного вида ткани отличается поперечным чередованием светлых (актиновых) и тёмных (миозиновых) волокон. Светлые волокна сокращаются быстрее тёмных, но и менее выносливы по сравнению с тёмными волокнами. Скелетная мускулатура может сокращаться произвольно под воздействием соматической нервной системы человека.
    мышцы их строение и функции
  2. Гладкие мышцы образуют мускулатуру большинства внутренних органов, как например: желудок, кишечник, кровеносные сосуды, дыхательные пути. Особенности гладких мышц заключаются в неупорядоченным чередовании красных и белых волокон. Кроме последовательности мышечных волокон, гладкие мышцы характеризуются более медленными и непроизвольными сокращениями под воздействием химических медиаторов (адреналин, ацетилхолин).
    особенности гладких мышц
  3. Сердечные мышцы — их строение и функции схожи с поперечно-полосатыми, однако наличие некоторых особенностей их строения позволяют выделить их в отдельную группу. Во-первых, клетки сердца меньше поперечно-полосатых клеток и ограждаются друг от друга специальными вставочными дисками, чего нет у скелетной мускулатуры. Кроме того, сердечная мышца может сокращаться и спонтанно, а не только в ответ на раздражающие факторы. Скорость сокращений занимает среднее значение между сократительной способностью гладких и скелетных мышечных волокон.
Оцените статью
Спорт и ЗОЖ