Синтез холестерина в организме

Информация

Откуда берется?

Большая часть вырабатывается самим организмом. В выработке участвуют печень, почки и надпочечники, половые железы, кишечник – их работа обеспечивает организм холестерином на 80%. Остальные 20% попадают к человеку с пищей.

В синтезе участвуют почти все клетки и ткани организма. Большая часть приходится на клетки печени – гепатоциты. Около 10% всего холестерина синтезируется клетками стенок тонкого кишечника, около 5% — клетками кожи.

Другими словами, главным участником метаболизма холестерина в организме является печень. Она не только вырабатывает этот спирт гепатоцитами, но и сама крайне нуждается в холестероле для поддержания их жизнедеятельности. Для этого печень забирает липопротеиды из крови.

ХОЛЕСТЕРИН НЕ ВСЕГДА ПЕРВОПРИЧИНА АТЕРОСКЛЕРОЗА

Содержание страницы:

  1. Что такое холестерин?
  2. Открытие холестерина
  3. Холестерин — строитель клеточных мембран и «сырье» для гормонов
  4. Сокращения, используемые в разделе
  5. Пути холестерина
  6. Мозг и холестерин
  7. Генетическая природа холестериновых аномалий
  8. «Перевозчики» холестерина
  9. «Перевозчик-4» — Липопротеид низкой плотности
  10. Судьбу холестерина в организме определяют аполипопротеины
  11. «Плохой» и «хороший» холестерин
  12. Инфекции и атеросклероз
  13. Липопротеиды высокой плотности
  14. Воспалительная теория атерогенеза
  15. Гомоцистеин
  16. Польза и вред статинов
  17. Заключение по разделу о холестерина и атеросклерозе
  18. Литература

С тех пор, как Всемирная организация здравоохранения объявила холестерин одной из главных причин атеросклероза, это вещество впало в немилость. Однако следует знать, что холестерин является жизненно важным веществом для организма человека и он является не единственной причиной атеросклероза (речь идет о причинно-следственной связи).

Холестерин часто путают с жирами. В отличие от жиров, он не используется организмом для получения калорий и не имеет отношения ни к ожирению, ни, тем более, к целлюлиту. Холестерин (С27Н46О) — жироподобное органическое вещество животного происхождения из группы стероидов — соединений с ядром из трех шести- и одного пятичленного углеродных колец.

Обмен холестерина

Рис.1. Стуктура и модель молекулы ходестерина

Прим. ред: Жиры, также триглицериды, триацилглицериды (вокр. ТАГ) — органические вещества, продукты этерификации карбоновых кислот и трёхатомного спирта глицерина. В живых организмах выполняют, прежде всего, структурную и энергетическую функции: они являются основным компонентом клеточной мембраны, а в жировых клетках сохраняется энергетический запас организма.

Рис.2. Шариковая модель триглицерида. Красным цветом выделен кислород, чёрным — углерод, белым — водород

Рис.3. Триглицериды. Зелёным цветом выделен остов глицерина, чёрным на белом фоне — часть молекулы жирных кислот (на рисунке — это радикалы пальмитиновой кислоты)

Открытие холестерина.Заслуга открытия холестерина всецело принадлежит французским химикам. В 1769 году Пулетье де ла Саль получил из желчных камней плотное белое вещество («жировоск»), обладавшее свойствами жиров. В чистом виде холестерин был выделен химиком, членом национального Конвента и министром просвещения Франции А.

Фуркруа в 1789 году. И лишь в 1815 году Мишель Шеврель, также выделивший это соединение, неудачно окрестил его холестерином (др.-греч. χολη — желчь и στερεος — твёрдый). В 1859 году Пьер Бертло доказал, что холестерин принадлежит к классу липофильных спиртов. Это обязывало в химическом названии вещества использовать суффикс «-ол», поэтому в 1900 году холестерин был переименован в холестерол, но в России прижилось неноменклатурное название. Вообще, путаница в названиях химических соединений — дело обычное.

Из холестерина в организме человека вырабатываются все стероидные вещества, в том числе витамин D и гормоны (рис. 1). Без него невозможно функционирование многих жизненно важных систем организма. В организме содержится до 350 г этого вещества. Только одну треть (примерно 0,3–0,5 г в день) необходимого холестерина мы получаем с пищей, а две трети (0,7–1 г) синтезируем сами: 80% в печени, 10% в стенке тонкого кишечника и 5% в коже. Синтезом собственного холестерина организм компенсирует избыток или недостаток в рационе.

Синтез холестерина в организме

Рис.4. Близкие родственники: холестерин, гормоны (кортизол, тестостерон), витамин D, фитостеролы (эргостерол, β-ситостерол).

В печени из холестерина синтезируются желчные кислоты, необходимые для эмульгирования и всасывания жиров в тонком кишечнике. На эти цели уходит 60–80% холестерина. Материнское молоко богато холестерином. Грудные и растущие дети особенно нуждаются в богатых жирами и холестерином продуктах для полноценного развития мозга и нервной системы.

Рис.5. Холестерин в составе клеточной мембраны

Как трудно представить себе дом без фундамента, так невозможно вообразить эукариотическую клетку без этого вещества. Совместно с фосфолипидами холестерин обеспечивает их прочность и особую мультифункциональность [1], [2]. Так, оболочки эритроцитов содержат 23% холестерина, клеток печени — примерно 17%, митохондриальные мембраны — 3%.

Рис.6. Схема строения холестерина — гидрофильная и гидрофобная частимембранного липида

Холестерин служит также «сырьем» для производства стероидных гормонов коры надпочечников — гидрокортизона и альдостерона, — а также женских и мужских половых гормонов — эстрогенов и андрогенов [3]. У мужчин помешательство на бесхолестериновых продуктах может быть опасным для сексуальной активности [4].

Следует подчеркнуть, соблюдение бесхолестериновой диеты здоровыми (!) женщинами детородного возраста бессмысленно, поскольку до наступления климакса женские половые гормоны просто не дают холестерину откладываться на стенках сосудов (рис. 7).

Рис.7. Холестериновые бляшки кровеносных сосудов.

Никакие диеты им, как правило, потерей сексуальности не грозят [5]. А вот у женщин, страдающих гормональными и обменными расстройствами, нередко прекращаются «критические дни». Увлечение обезжиренными продуктами чревато существенным снижением гормона эстрадиола в лютеиновой фазе менструального цикла [6], что, несомненно, может привести к бесплодию.

Общая схема биосинтеза холестерина

Кроме того, у таких женщин в фолликулярной фазе менструального цикла регистрируются повышенные уровни триглицеридов и липопротеинов очень низкой плотности [7], что, как будет сказано ниже, сокращает путь к атеросклерозу. Биологическая активность лактогенных гормонов (пролактина и соматотропина) лютеиновой фазы на 28% выше у женщин, потребляющих пищу, богатую жирами, по сравнению с теми, кто «сидит» на диете с низким содержанием жира [8]. Кормящим мамочкам стоит обратить на это особое внимание!

И уж совсем непозволительно экспериментировать с диетами беременным женщинам! Исследованиями сложных взаимоотношений холестерина и гормонов в организме матери и ее будущего ребенка установлено, что изменения в уровне липопротеинов могут вызвать нарушения в обмене стероидов, связанных с полом плода. Концентрации Х-ЛПВП в пуповинной крови новорожденных женского пола были выше, чем у новорожденных мужского пола, в то время как по уровням Х-ЛПНП различий не наблюдалось.

Некоторые сокращения, используемые в разделе:

  • ЛП (А)липопротеин (а)
  • ХМхиломикроны
  • ЛПОНПЛипоПротеиды Очень Низкой Плотности
  • ЛПППЛипоПротеиды Промежуточной Плотности
  • ЛПНПЛипоПротеиды Низкой Плотности
  • ЛПВПЛипоПротеиды Высокой Плотности
  • Х-ЛПОНПХолестерин ЛипоПротеидов Очень Низкой Плотности
  • Х-ЛПППХолестерин ЛипоПротеидов Промежуточной Плотности
  • Х-ЛПНПХолестерин ЛипоПротеидов Низкой Плотности
  • Х-ЛПВПХолестерин ЛипоПротеидов Высокой Плотности

ПУТИ ХОЛЕСТЕРИНА

Биохимик Конрад Блох (он эмигрировал в Штаты из гитлеровской Германии) и его сотрудники в 1942 г. показали, что в организме человека синтез холестерина начинается с уксусной кислоты. Основные звенья биосинтеза холестерина: ацетат → холестерин → жирные кислоты → половые гормоны. Благодаря этому открытию стало ясно, что холестерин является необходимым компонентом всех клеток организма, и что все стероидные вещества в организме человека вырабатываются из холестерина. В 1964 г. К.

Несмотря на всю сложность и многоэтапность этих процессов, ключевым ферментом, определяющим скорость синтеза холестерина, выступает ГМГ-КоА-редуктаза. Работу этого фермента и подавляют статины — широко пропагандируемые гиполипидемические (снижающие уровень холестерина) препараты.

Механизм внутриклеточного холестеринового гомеостаза сложен [27]. Содержание холестерина в клетке регулируется двумя путями. Первый из них контролирует продукцию холестерина по механизму обратной отрицательной связи. Второй связан с регуляцией его транспорта через клеточную мембрану из межклеточного пространства. Этот транспорт осуществляется при участии рецепторов липопротеидов низкой плотности (ЛПНП), о которых будет сказано ниже.

Химический состав межклеточных мембран

Баланс уровня холестерина в организме достигается благодаря процессам внутриклеточного синтеза, захвата из плазмы (преимущественно из ЛПНП), выхода из клетки в плазму (преимущественно в составе ЛПВП) [26]. Лимитирующая стадия синтеза холестерина в значительной мере определяется количеством холестерина, абсорбируемого в кишечнике и транспортируемого в печень.

При недостатке этого вещества происходит компенсаторное усиление его захвата и синтеза. Иными словами, поскольку холестерин столь важен для нормальной жизнедеятельности организма, поступление его с пищей (экзогенный холестерин) дополняется синтезом в клетках почти всех органов и тканей (эндогенный холестерин), однако, как указывалось ранее, в значительных количествах он образуется в печени (80%), в стенке тонкой кишки (10%) и коже (5%).

Мозг и холестерин.

Группа американских исследователей во главе с Маттиусом Чопом из Университета Цинциннати выяснила (в эксперименте на мышах), что за содержание холестерина в организме может отвечать в том числе и мозг, точнее — клетки гипоталамуса, которые реагируют на гормон грелин. Грелин влияет на активность гипоталамуса, а уже гипоталамус при помощи ряда других гормонов влияет на переработку холестерина в печени [29].

Генетическая природа холестериновых аномалий

В обмене холестерина принимают участие десятки ферментов, и мутация в каждом из кодирующих их генов может привести к нарушению работы всей системы. Известны, например, так называемые семейные формы гиперхолестеринемии [1], [28]. Эти нарушения липидного обмена связаны с мутацией генов, кодирующих рецепторы липопротеидов низкой плотности.

Как транспортируется?

Липопротеиды в свою очередь различают на:

  1. Высокомолекулярные соединения (липопротеиды высокой плотности);
  2. Низкомолекулярные (липопротеиды низкой плотности);
  3. Очень низкомолекулярные;
  4. Вырабатываемый кишечником хиломикрон.

Липопротеиды высокой плотности транспортируют холестерин к печени, откуда он затем выводится. Хиломикрон, липопротеиды низкой и очень низкой плотности отвечают за транспортировку холестерина к периферийным тканям.


Эндогенный цикл холестеринового обмена:
Экзогенный цикл обмена холестерина в организме:
  1. За синтез холестерина в организме отвечает печень. Она синтезирует холестерол и выбрасывает его в кровь при помощи липопротеинов очень низкой плотности (ЛПОНП).
  2. ЛПОНП попадают в кровь и разносятся к периферическим тканям.
  3. В мышечных и жировых тканях ЛПОНП отдают большую часть жирных кислот и глицерола, уменьшаются и становятся липопротеидами промежуточной плотности.
  4. Часть промежуточных липопротеидов превращаются в липопротеиды высокой плотности (ЛПВП), которые собирают ЛПНП по всему организму, а часть всасываются из крови печенью, где они распадаются на липопротеиды низкой плотности (ЛПНП).
  1. Холестерин, попадающий из вне, всасывается в ЖКТ и преобразуется в хиломикрон.
  2. Хиломикроны транспортируются кровью во все ткани. При соприкосновении с липопротеинлипазой, хиломикроны отдают жиры.
  3. Остатки хиломикронов принимают участие в выработке ЛПВП, которые отправляются в печень.
  4. В печени происходит некая сортировка, после которой избыток липопротеинов выводится из организма.

«ПЕРЕВОЗЧИКИ» ХОЛЕСТЕРИНА

Транспорт холестерина: В организме холестерин никогда не бывает сам по себе — он всегда связан с липидами. Будучи гидрофобным соединением, это вещество нерастворимо в воде и плазме крови. Холестерин может переноситься с током крови только в составе так называемых транспортных форм — липопротеинов (белково-липидных комплексов), представляющих собой сферические частицы (рис.

8), наружный (гидрофильный) слой которых образуют фосфолипиды и белки-апопротеины (или просто «апо»), а гидрофобное ядро составляют триглицериды (попросту говоря, жиры) и холестерин (точнее, эфир холестерина). Ядро — функциональный груз, который доставляется до места назначения. Оболочка же участвует в распознавании клеточными рецепторами липопротеиновых частиц и в обмене липидными частями между различными липопротеинами (то есть, служит своего рода контейнером) [30].

Холестерин

Рис.8. Белково-липидный комплекс.

«Перевозчик-1» (Хиломикрон)

Хиломикроны (ХМ) — самые большие по размеру (диаметр 80–500 нм), но самые маленькие по плотности. Они образуются в эндоплазматическом ретикулуме кишечника, секретируются в лимфу и затем через грудной проток попадают в кровь. Период полужизни ХМ составляет 5–20 минут. При попадании в кровоток хиломикроны теряют аполипопротеины А-1, А-11, А-1V, но приобретают аполипопротеины апоС и апоЕ.

«Перевозчик-2» (ЛПОНП)

Липопротеиды очень низкой плотности (ЛПОНП; их называют также пре-β-липопротеидами) являются транспортной формой эндогенных триглицеридов, на их долю приходится около 50–70% массы всех липопротеидных частиц, содержащих 90–92% липидов и 8–10% белков (аполипопротеины В-100, С-1, С-11, С-111, Е). Их плотность — менее 1,006 г/мл, диаметр частицы — 30–80 нм. Формируются в печени, из них образуются ЛПНП.

«Перевозчик-3» (ЛППП)

Липопротеиды промежуточной плотности (ЛППП) присутствуют в очень низких концентрациях и являются продуктом метаболизма ЛПОНП. Соотношение липидов и белка (аполипопротеины В-100, Е) в составе частиц непостоянно. Их плотность — 1,006–1,019 г/мл, диаметр частицы — 25–35 нм.

«Перевозчик-4» (ЛПНП)

Общая схема обмена холестерина в организме человека

Липопротеиды низкой плотности (ЛПНП; их называют также β-липопротеидами) являются основным переносчиком эндогенного холестерина в крови (около 70% общего холестерина плазмы). Плотность — 1,019–0,063 г/мл, диаметр частицы — 18–28 нм. Сферические частицы ЛПНП состоят на 80% из липидов, на 20% из белков, ключевым белком является аполипопротеин В-100 (АпоВ-100).

Рис.9. Строение сферической частицы Х-ЛПНП (частицы Х-ЛПВП имеют похожую организацию, их основной аполипопротеин — АпоА). В таком упакованном виде холестерин переносится из печени в ткани. Частицы ЛПНП варьируют по размеру, плотности, составу и физико-химическим свойствам, вследствие чего количество их субфракций может достигать 15.

Липидное ядро ЛПНП почти полностью состоит из эфиров холестерина. Период полужизни ЛПНП в крови — 2,5 дня. За это время до 75% из них захватывается клетками печени, а остальные 25% попадают в другие органы. Чтобы холестерин попал в печень, ее клетки должны «выхватить» ЛПНП из кровяного русла. Для этого на поверхности каждой частицы и находятся сигнальные аполипопротеины (иногда для краткости их называют апопротеинами или апобелками), а на поверхности клетки-захватчицы — соответствующие им рецепторы.

Именно за открытие в клетках печени специфического рецептора LXR (liver X receptor) для поглощения из крови избыточного Х-ЛПНП американские генетики Майкл Браун и Джозеф Голдстайн в 1985 году и получили Нобелевскую премию в области физиологии и медицины «за выдающиеся открытия, касающиеся обмена холестерина и лечения нарушений уровня холестерина в крови».

Метаболизм ЛПНП идет двумя путями. Первый путь — связывание с АпоВ/Е-рецепторами печени, клеток надпочечников и периферических клеток, включая гладкомышечные клетки и фибробласты. В норме рецептор-опосредованным путем из кровеносного русла удаляется около 75% ЛПНП. После проникновения в клетку частицы ЛПНП распадаются и высвобождают свободный холестерин.

Существует обратная отрицательная связь: чем больше холестерина внутри клетки, тем хуже он поглощается. При избытке внутриклеточного холестерина он через взаимодействие с геном рецептора ЛПНП подавляет синтез рецепторов к ЛПНП и, наоборот, при низком уровне внутриклеточного холестерина синтез рецепторов к ЛПНП возрастает.

Альтернативный путь метаболизма частиц ЛПНП — окисление. Перекисно-модифицированные ЛПНП слабо распознаются Апо-В/Е-рецепторами, но быстро распознаются и захватываются так называемыми скэвенджерами (англ. scavenger — мусорщик) — рецепторами макрофагов [32]. Этот путь катаболизма ЛПНП, в отличие от рецептор-зависимого пути, не подавляется при увеличении количества внутриклеточного холестерина.

«Перевозчик-5» (ЛПВП)

Липопротеиды высокой плотности (ЛПВП) — самые мелкие липопротеидные частицы (плотность — 1,055–1,21 г/мл, диаметр частицы — 5–9 нм). Их также называют α-липопротеидами. На их долю приходится 20–30% общего холестерина крови, но из всех липопротеидов именно эти частицы содержат наибольшее количество фосфолипидов и белка (поровну).

Плохой и хороший холестерин

А-1, А-11, С-1, С-II, С-III, Е — апопротеины ЛПВП-частиц. Основной компонент ЛПВП — аполипопротеин А-1, составляющий около 30% всей частицы. Его функции — быть кофактором для реакции, осуществляемой LCAT (лецитин-холестерол-ацетилтрансферазой), и обеспечивать поглощение холестерина из клеток. Это ключевая стадия обратного переноса холестерина в печень для его дальнейшего распада. Синтезируется апоА-1 в тонком кишечнике и печени примерно в равных количествах.

По наличию аполипопротеина С различают три субфракции ЛПВП:

  1. ЛПВП-СI с плавучей плотностью 1,055–1,085 г/мл;
  2. ЛПВП-СII с плавучей плотностью 1,063–1,120 г/мл;
  3. ЛПВП-СIII с плавучей плотностью 1,120–1,210 г/мл.

АпоС-1 активирует LCAT и ингибирует фосфолипазу А2. АпоСII — кофактор липопротеиновой липазы. АпоСIII защищает ремнантные липопротеины — продукты распада хиломикронов и ЛПОНП.

Синтезируются ЛПВП-С в кишечнике и печени в виде предшественников (дисковидных частиц), которые превращаются в сферические частицы уже в плазме.

Важную роль в метаболизме холестерина и стероидов играет рецептор-«мусорщик» SR-BI. Он был обнаружен в 1996 г. как рецептор для ЛПВП [34] при избирательном захвате холестерина в печени, надпочечниках, макрофагах, плазме.

«Перевозчик-6»

Но полиморфизм липопротеинов на этом не заканчивается. В последнее время идентифицирован еще и липопротеин ЛП(a) — опасный родственник ЛПНП. Собственно, это и есть ЛПНП, но с «довеском» в виде белка апопротеина (а), связанного с АпоВ дисульфидной связью. Синтезируется ЛП(a) в печени, а катаболизируется в почках, в отличие от других липопротеинов.

Апо(а) — гликопротеин с очень большим содержанием нейраминовой кислоты и поэтому водорастворимый, в отличие от АпоВ-100. Белковая часть этого гликопротеина состоит из доменов типа «kringle» (крендель), имеющих гомологию с белками системы свертывания крови — плазминогеном, тканевым активатором плазминогена и фактором ХII.

Количество доменов в молекуле апо(а) человеческой популяции варьирует от 12 до 51, а уровни ЛП(a) могут находиться в диапазоне от 1000 мг/л. Это предопределяется генетически, то есть не зависит ни от возраста, ни от пола, ни от диеты, ни от условий жизни, а потому понизить концентрацию ЛП(a) в крови практически невозможно ни изменением диеты, ни снижением массы тела, ни лекарственными препаратами [35].

Или холестерин высвободится из «упаковки» и будет поглощен клетками для выполнения своих жизненно важных функций, или излишний холестерин будет удален из тканей и крови и упакован внутрь липопротеиновой частицы, которая унесет его в печень. Аполипопротеины являются структурными элементами, у которых гидрофильный участок контактирует с водными компонентами плазмы, тем самым обеспечивая перенос водонерастворимых липидов кровотоком.

Основной компонент ЛПВП — аполипопротеин А1, тогда как ключевым компонентом ХМ, ЛПОНП, ЛППП, ЛПНП является аполипопротеин В. Именно он обеспечивает выемку холестерина из «упаковки» и передачу его в клетки, отвечает за способность липопротеинов переносить холестерин из печени в ткани, необходим для образования липопротеинов, богатых триглицеридами. Аполипопротеин В отличается полиморфизмом и встречается в двух формах:

  • апоВ-100 — большой белок (4536 аминокислотных остатков), содержащийся в ЛПОНП, ЛППП и ЛПНП. Образуется в печени, прочно связан с липидной сердцевиной и поэтому не способен переходить из одной сферической частицы в другую;
  • апоВ-48 обнаруживается в хиломикронах, образуется в тонком кишечнике при расщеплении апоВ-100.

Плохой и хороший холестерин

Научно доказана зависимость между обменом холестерина в организме человека и состоянием здоровья. Так, например, низкомолекулярные ЛПНП очень плохо растворяются и могут выпадать в виде осадка на стенки сосудов, что приводит к образованию атеросклеротических бляшек. Бляшки сужают просветы сосудов, нарушают кровоснабжение органов, что, в свою очередь, может привести к развитию сердечно-сосудистых заболеваний, инфарктам, ишемическим инсультам. Поэтому такие липопротеиды называют «плохими».

Высокомолекулярные ЛПВП присутствуют в крови здорового человека в большом количестве, их называют «хорошими». Они не могут осаждаться на стенках, так как легко растворяются в крови, тем самым, в отличие от ЛПНП, защищая стенки сосудов от атеросклероза.

На повышение уровня ЛПНП оказывают влияние сопутствующие заболевания, такие, как сахарный диабет, болезни печени, желчного пузыря, почек и ряд других. Поэтому при выявлении повышения «плохого» холестерина необходимо проводить полное обследование пациента, стараясь выявить все возможные заболевания, в том числе, передающиеся по наследству.

Выводы:

  • Холестерин (синоним: холестерол) занимает важную роль во всех биохимических процессах организма. Он принимает участие в выработке половых гормонов, в обмене энергией и питательными веществами, в синтезе витамина D3. Будучи нерастворимым, транспортируется по всему организму, распадаясь на липопротеиды различной плотности.
  • Холестерол вырабатывается организмом человека (эндогенная выработка), а также поступает из вне с едой и питьем (экзогенный путь).
  • Правильный обмен холестерина способствует поддержанию работы всех клеток организма на необходимом уровне. Липопротеиды высокой плотности препятствуют образованию атеросклеротических бляшек. Низкомолекулярные липопротеиды, наоборот, увеличивают риск развития атеросклероза и инфаркта. Сам по себе холестерин не способен накапливаться; его излишки выводятся из организма.
  • Для лечения нарушений синтеза холестерола и его обмена в организме, необходимо выявить все сопутствующие и наследственные заболевания, проверить работоспособность всех органов человека.

Термины «плохой» и «хороший» холестерин возникли после того, как было установлено, что в организме холестерин никогда не бывает сам по себе — он всегда связан с липидами [36]. Различные классы липопротеинов по-разному причастны к возникновению атеросклероза. Так, атерогенность липопротеинов частично зависит от размера частиц.

Самые мелкие липопротеиды, такие как ЛПВП, легко проникают в стенку сосуда, но так же легко ее покидают, не вызывая образования атеросклеротической бляшки. За это их и называют «хорошими» липопротеинами. ЛПНП, ЛППП и ЛПОНП при окислении легко задерживаются в сосудистой стенке. ЛПНП — наиболее атерогенные липопротеины крови.

А вот хиломикроны сами по себе неатерогенны: они слишком велики, вследствие чего неспособны проникать в сосудистый эпителий и вызывать эндотелиальные дисфункции. Но когда их триглицеридная «начинка» расходуется, их остатки (remnants) сильно уменьшаются в размерах и приобретают потенциальную атерогенность.

Такие ремнантные частицы содержат экзогенный (пищевой) холестерин, апоВ-48 и апоЕ. Именно маленький размер ремнантных хиломикронов позволяет им проникать через стенки артерий и связываться со специфическими участками на тканевых макрофагах, вызывая их превращение в «пенистые» клетки и запуская медленный воспалительный процесс в стенках артерий (об этом — чуть позже).

В норме апоЕ, расположенный на поверхности таких частиц, в печени связывается с рецепторами Х-ЛПНП и там же утилизируется. Но до этого момента ремнантные частицы (теоретически) могут успеть реализовать свою потенциальную атерогенность, особенно, если печень нездорова (например, поражена вирусом гепатита С) [37]. В общем, именно высвобождение из хиломикронов триглицеридов и последующая неэффективная утилизация ремнантных ХМ и повышают риск атерогенеза [38].

Большая часть того того, что известно о «хороших» и «плохих» свойствах холестерина, касается именно липопротеинов — «перевозчиков». Холестерин, связанный с липопротеинами низкой, промежуточной и очень низкой плотности, стали называть «плохим», а связанный с не имеющими отношения к атеросклерозу липопротеинами высокой плотности — «хорошим» [39].

Это стало очевидным из многочисленных проспективных исследований, в которых было доказано, что повышение уровня «плохого» Х-ЛПНП и понижение концентрации «хорошего» Х-ЛПВП увеличивает риск возникновения и развития атеросклероза, риски фатальных и нефатальных инфарктов миокарда и ишемических инсультов [40], [41].

Как избавиться от холестерина

Полученные результаты послужили платформой для разработки рекомендаций по снижению концентрации «плохого» холестерина, ставших, как считали, основой профилактики атеросклероза и стратегической целью диетического и медикаментозного вмешательства. Но, как оказалось, все не так просто, и остались вопросы…

Размер частиц Х-ЛПНП был признан предиктором возникновения и развития ССЗ и последующих острых коронарных событий. В марте 2006 года на страницах одного из самых престижных медицинских журналов появился манифест, подписанный тридцатью специалистами из десяти стран [44]. Он призывает к установлению новых правил оценки риска ССЗ.

Предлагается заменить общепринятое определение в плазме общего холестерина, Х-ЛПНП и Х-ЛПВП на измерение концентраций АпоВ и АпоА — основных апопротеинов Х-ЛПНП и Х-ЛПВП, соответственно. Именно показатель баланса атерогенных и антиатерогенных частиц АпоВ/АпоА — самый точный индикатор риска ССЗ у лиц с бессимптомными сердечнососудистыми заболеваниями и диабетиков.

К сожалению, уменьшение размера частиц Х-ЛПНП — далеко не все, что делает «плохой» холестерин «еще хуже». Оказалось, что избыточная концентрация глюкозы в крови диабетиков приводит к нарушению обмена холестерина, а главная причина их смертности — ССЗ, вызванные гиперхолестеринемией. В основе такой причинно-следственной связи лежит гликозилирование — неферментативное присоединение глюкозы к апопротеину, в результате чего химически модифицированный АпоВ делает частицы Х-ЛПНП более атерогенными.

А это приводит к выводу, что у двух лиц с одинаковым количеством частиц Х-ЛПНП одинакового размера могут быть разные уровни гликозилированного АпоВ и, стало быть, разные судьбы. И закономерно возникает вопрос: можно ли считать нарушение метаболизма холестерина и изменение размера частиц Х-ЛПНП единственными причинами атеросклероза?

Было установлено, что в атеросклеротических повреждениях стенок сосудов всегда обнаруживается миелопероксидаза (МПО) — центральный нападающий неспецифического иммунитета. Этот гем-содержащий фермент выполняет одну из ключевых функций в микробицидной системе, опосредованной нейтрофилами. Супероксидные анионы, являющиеся продуктами окислительного и нитрозативного стресса, повреждают не только микроорганизмы, но и ткани макроорганизма.

На то он и неспецифический иммунитет! Это происходит при многих воспалительных процессах [45], в том числе и при атеросклерозе. Высокореактивные соединения окисляют и модифицируют в «плохом» Х-ЛПНП практически все его компоненты, вследствие чего пусть «плохой», но «свой» Х-ЛПНП превращается в окисленный и уже «чужой» о-Х-ЛПНП.

Несмотря на то, что между атеросклерозом, повышенным уровнем о-Х-ЛПНП и хроническими инфекциями существует определенная связь, атеросклероз инфекционным заболеванием не является. Хронические инфекции могут лишь приводить к его возникновению и развитию [47].

Рис.10. Строение атеросклеротической бляшки, образовавшейся в результате воспалительного процесса. «Воспалительная» теория утверждает, что атеросклероз — это вызываемый неспецифическим иммунитетом вялотекущий воспалительный процесс в стенках сосудов.

ЛИПОПРОТЕИДЫ ВЫСОКОЙ ПЛОТНОСТИ

Мы помним, какие хорошие ЛПВП! Ведь они удаляют избыточный холестерин из клеток органов, тканей и крови, то есть проявляют антиатерогенные свойства. Помимо этого, частицы ЛПВП, содержащие «хороший» холестерин (Х-ЛПВП), обладают многими другими положительными характеристиками [50], [51]:

  1. их основные белки — АпоА1 и АпоАII — являются эффективными антиоксидантами;
  2. с ними связан особый фермент параоксоназа 1 (ПОН 1), который ингибирует окисление Х-ЛПНП, расщепляя токсичные окисленные липиды в составе о-Х-ЛПНП;
  3. уменьшая связывание моноцитов крови со стенками артерий, они проявляют противовоспалительные качества;
  4. стимулируют движение эндотелиальных клеток;
  5. ингибируют синтез факторов активации тромбоцитов эндотелиальными клетками;
  6. защищают эритроциты от генерации прокоагулянтной активности, что понижает вероятность образования тромбов;
  7. стимулируют синтез простациклинов эндотелиальными клетками, продлевая время их жизни;
  8. уменьшают синтез ДНК в васкулярных гладких мышцах, индуцируемый эпидермальным фактором роста;
  9. имеют тромболитические свойства;
  10. модулируют эндотелиальную функцию, очевидно, за счет стимулирования продукции NO.

Количественный вклад каждого из этих факторов в понижении риска атерогенеза пока не ясен, но в целом их значение трудно переоценить [28].

Причины возникновения атеросклероза и механизм его развития на сегодня нельзя считать окончательно установленными. Как видно из сказанного выше, наряду с традиционной «инфильтративной» теорией атерогенеза сосуществует «воспалительная» теория, утверждающая, что атеросклероз — это вызываемый неспецифическим иммунитетом вялотекущий воспалительный процесс в стенках сосудов. Нельзя сказать, что новые теории возникновения атеросклероза скрывают от общественности, их просто редко освещают.

Неузнаваемо преобразились методические возможности изучения атеросклероза. Сегодня ученые в его возникновении и формировании выделяют четыре определяющих механизма:

  • нарушение липидного обмена,
  • наследственный фактор,
  • состояние сосудистой стенки,
  • нарушение рецепторного аппарата клеток.

В каждом из них обнаружено не одно патологическое звено, формирующее в конечном итоге тот комплекс патогенетических факторов, которые определяют возникновение атеросклеротических изменений в стенке сосуда [32]. Многочисленными эпидемиологическими исследованиями было показано, что атеросклероз — это полиэтиологическое заболевание.

В процессе формирования атеросклероза состояние сосудистой стенки играет не меньшую роль, чем нарушения липидного обмена. Право на жизнь получила теория, основанная на том, что для возникновения болезни необходимо повреждение стенки сосуда (механическое, химическое или иммунологическое). 

Нарушение функции эндотелия могут вызвать многие факторы: гемодинамические (артериальная гипертония), избыточный уровень гормонов (гиперинсулинемия), инфекции, токсичные соединения и др. Оказалось, что в местах, предрасположенных к формированию атеросклероза, происходит, прежде всего, трансформация клеток.

В этих областях сосудов вместо дифференцированных, четко отграниченных клеток эндотелия появляются крупные многоядерные клетки неправильной формы. Меняются и входящие в состав стенки сосуда гладкомышечные клетки — они увеличиваются в размерах, вокруг их ядер накапливается коллаген [33]. Именно этот факт имеет большое значение в понимании процесса развития атеросклероза у больных с нормальным и даже пониженным содержанием холестерина в крови.

Рис.11. От повреждения эндотелия до инфаркта.

ГОМОЦИСТЕИН

Среди факторов, повреждающих стенки сосудов, в последнее время особый акцент делается на гомоцистеин [55]. В 1995 году научный мир потрясло известие о том, что ученые открыли «новый холестерин» [56], хотя это соединение впервые описали еще в 1932 году, а гомоцистеиновая теория атеросклероза возникла еще в 1969 году.

Рис. 12. Гомоцистеин — непротеиногенная аминокислота

Гомоцистеин — это промежуточный продукт обмена незаменимой аминокислоты метионина. В окончательные соединения, вырабатываемые организмом, он не входит. В норме гомоцистеин живет в организме очень короткое время и под воздействием фолиевой кислоты и витамина В12 рециклируется обратно в метионин или под влиянием витамина В6 превращается в следующий продукт обмена — цистотионин.

Различные наследственные и приобретенные нарушения в организме приводят к тому, что гомоцистеин не утилизируется. В этом случае он накапливается в организме и становится для него опасным. Главное негативное его действие заключается в том, что он, обладая цитотоксичностью, поражает внутреннюю стенку артерий — интиму, покрытую эндотелием [58]. Образуются разрывы эндотелия, которые организм пытается чем-то заживить. Вот тогда он и использует для этого холестерин и другие жирные субстанции.

Даже очень маленькие количества гомоцистеина могут оказывать достаточно сильное действие на сосуды, поэтому нормы этого вещества для человека практически не существует, хотя и принято считать уровень гомоцистеина в крови натощак в диапазоне 5–15 мкМ/л нормальным. Концентрация этого вещества в крови в 1000 раз меньше, чем холестерина, и повышение его уровня всего на 20–30% может вызвать тяжелые последствия [59].

Установлено, что гомоцистеин вклинивается в холестериновый гомеостаз нейронов, а совместное действие с холестерином в присутствии меди существенно повышает уровни реактивных кислородных радикалов, делая нейроны более уязвимыми к амилоиду-β. Гипергомоцистеинемия является фактором риска деменции [60], [61].

Работа ферментов, участвующих в биохимических превращениях гомоцистеина, невозможна без кофакторов («помощников») — витаминов B6, B12 и B9 (фолиевой кислоты). В этом кроется возможный подход к профилактике и лечению атеросклероза с помощью витаминов группы B, прежде всего — фолиевой кислоты [62].

«Фолиум» в переводе с латинского означает «лист». Поэтому неудивительно, что естественным источником фолиевой кислоты являются салаты, капуста, сельдерей, лук, зеленый горошек, спаржа. Немало фолатов и в цитрусовых, бананах, авокадо, свежих грибах, свекле, зерновых, гречневой и овсяной крупах, пшене, орехах и др.

Фолиевая кислота прежде ничем не выделялась среди своих собратьев-витаминов. Но в последнее время она стала настоящим возмутителем спокойствия. Именнонедостаткомв организме человека этого витамина многие ученые объясняют теперь возникновение главной болезни цивилизации — атеросклероза [63].

Гомоцистеиновая теория весьма убедительно объясняет причины возникновения и патогенез атеросклероза, хотя, как и другие теории, не дает исчерпывающих ответов на все поставленные вопросы.

ПОЛЬЗА И ВРЕД СТАТИНОВ

Статины — вещества, специфически подавляющие активность 3-гидрокси-3-метилглутарил КоА редуктазы, фермента, необходимого для одного из первых этапов синтеза холестерина, — были открыты в 1976 году. В этот список входят ловастатин (мевакор), правастатин (правакол), симвастатин (зокор), флувастатин (лескол), аторвастатин (липитор). И он постоянно пополняется, несмотря на неоднозначные результаты применения статинов в клинической практике.

«Организм человека физиологически и биохимически является настолько точно и тонко скоординированной системой, что длительное вмешательство в тот или иной естественный жизненный процесс не может остаться без разнообразных, часто неожиданных последствий» [1].

Так, женщинам пожилого нерепродуктивного возраста прием статинов категорически противопоказан, так как эти препараты повышают риск диабета 2 типа [64]. По сравнению со сверстницами, не принимающими гипохолестеринемические средства, у них риск этого заболевания выше на 48% [65]. В мета-анализе двух недавно проведенных широкомасштабных плацебо-контролируемых исследований установлено, что статиновая терапия повышает риск диабета 2 типа на 9–13% по сравнению с контролем [66].

Частый побочный эффект такого лечения — миопатия — приводит к слабости и атрофии мышц. Наше сердце тоже мышца, причем самая главная, а ее кровоснабжение в первую очередь страдает при атеросклерозе. И если на эту уже больную мышцу подействовать статинами, нетрудно представить, что за этим может последовать.

Безусловно, статины дают какой-то краткосрочный эффект, особенно у людей,страдающих генетически детерминированной гиперхолестеринемией, но в предупреждении и устранении атеросклероза их роль весьма сомнительна. Они лишь на какое-то время откладывают инфаркт или смерть от него. И здесь необходимо отметить, что эти препараты вводились в широкую практику и прописывались миллионам пациентов в возрасте 50–60 лет, поскольку именно в этой возрастной категории самый высокий риск ССЗ [67].

Был сделан вывод, что статины действительно снижают риск ССЗ у людей среднего возраста, тогда как у людей в возрасте 75–85 лет способствуют повышению частоты их смертности.

примерно половина сердечных приступов и ишемических инсультов происходят при нормальных уровнях холестерина. Однако он остается основным фактором одного из механизмов возникновения атеросклероза — нарушения липидного обмена. Этим во многом оправдывается классическое диетическое и медикаментозное вмешательство при в профилактике и лечении ССЗ.

При этом следует учитывать результаты исследований, указывающие на наличие иных механизмов развития атеросклероза, а при назначении статинов — учитывать возраст пациентов. Более того, следует учитыать тот факт, что для здоровых людей строгие ограничения в потреблении холестеринсодержащих продуктов могут вызвать противоположный эффект — привести к заболеваниям.

Со своей стороны хотелось бы отметить, что с учетом изложенного и наличия побочных эффектов (противопоказаний) при применении медикаментов (статинов), использование физиологичных для человека пробиотических микроорганизмов является безопасным и наиболее перспективным методом профилактики нарушений липидного обмена, т.к.

бактерии находясь в симбиотических отношениях с организмом хозяина (ЯВЛЯЯСЬ ЕГО НЕОТЪЕМЛИМОЙ ЧАСТЬЮ) и обладая выраженной холестеринметаболизирующей активностью, непосредственно участвуют в системе саморегуляции холестеринового обмена, предотвращая гиперхолестеринемию и повышение в крови концентрации атерогенного класса липопротеидов (ЛПНП и ЛПОНП).

Традиционные подходы к этиопатогенезу атеросклероза, основанные на исключительной роли клеток, тканей, либо органов человека, больше не способны дать новых конструктивных идей, позволяющих разрабатывать высокоэффективные формы и методы профилактики и лечения. В этой связи микрофлора (кишечный микробиом) является важнейшим фактором регулирования атеросклеротических процессов. Микроэкологические нарушения в организме человека следует считать пусковыми механизмами нарушений липидного обмена.

Применение пробиотических микроорганизмов оправдано и при таком механизме развития атеросклероза, который связан с патологией сосудистой стенки, имеющей химическую или иммунологическую природу возникновения. Обладая явными детоксицирующими и иммунотропными свойствами, пробиотики снижают подобные риски поражения артерий.

Более того, риск разрывов эндотелия артерий (которые организм «залечивает» холестерином) из-за цитотоксического действия гомоцистеина можно заметно минимизировать, используя витаминсинтезирующие свойства определенных бактерий. В отсутствие необходимого количества витамина В12 и фоливой кислоты количество гомоцистеина резко возрастает.

Будьте здоровы!

Оцените статью
Спорт и ЗОЖ